Buckling Analysis of Thin Functionally Graded Rectangular Plates with two Opposite Edges Simply Supported
Authors
Abstract:
In this article, an exact analytical solution for thermal buckling analysis of thin functionallygraded (FG) rectangular plates is presented. Based on the classical plate theory and using the principle ofminimum total potential energy, the stability equations are obtained. Since the material properties in FGmaterials are functions of the coordinates (specially the thickness), the stability equations are coupled interms of in-plane and out-of plane displacements. Introducing a new analytical method, the coupledstability equations are converted into independent equations. It is assumed that the plate is simplysupported on two opposite edges and has arbitrary boundary conditions along the other edges, so theLevy solution is considered. Two types of thermal loads, uniform and non-linear temperature risethrough the thickness are considered as the loading conditions. Finally, the effect of aspect ratio,thickness to side ratio, index of FGM and boundary conditions on the critical buckling temperature ofFG rectangular plates are discussed in details.
similar resources
Buckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading
In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition fourier solution f...
full textNon-Linear Analysis of Functionally Graded Sector Plates with Simply Supported Radial Edges Under Transverse Loading
In this study, nonlinear bending of functionally graded (FG) circular sector plates with simply supported radial edges subjected to transverse mechanical loading has been investigated. Based on the first-order shear deformation plate theory with von Karman strain-displacement relations, the nonlinear equilibrium equations of sector plates are obtained. Introducing a stress function and a potent...
full textBuckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads
This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...
full textClosed Form Solutions for Thermal Buckling of Functionally Graded Rectangular Thin Plates
This work concerns the critical buckling temperature of functionally graded rectangular thin plates; the properties of functionally graded material vary continuously in accordance with the power law of thickness z. Closed form solutions for the critical thermal parameter are obtained for the plate with the following boundary condition combinations: simply supported, clamped and guided edges, un...
full textThermal Stability of Thin Rectangular Plates with Variable Thickness Made of Functionally Graded Materials
In this research, thermal buckling of thin rectangular plate made of Functionally Graded Materials (FGMs) with linear varying thickness is considered. Material properties are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The supporting condition of all edges of such a plate is simply supported. ...
full textThermal buckling analysis of ceramic-metal functionally graded plates
Thermal buckling response of functionally graded plates is presented in this paper using sinusoidal shear deformation plate theory (SPT). The material properties of the plate are assumed to vary according to a power law form in the thickness direction. Equilibrium and stability equations are derived based on the SPT. The non-linear governing equations are solved for plates subjected to simply s...
full textMy Resources
Journal title
volume 23 issue 2
pages 179- 192
publication date 2010-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023